Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Highly efficient injection microdisk lasers based on quantum well-dots

Not Accessible

Your library or personal account may give you access

Abstract

We study injection GaAs-based microdisk lasers capable of operating at room and elevated temperatures. A novel type of active region is used, namely InGaAs quantum well-dots representing a dense array of indium-rich islands formed inside an indium-depleted residual quantum well by metalorganic vapor phase epitaxy. We demonstrate a high output power of 18 mW, a differential efficiency of about 31%, and a peak electrical-to-optical power conversion efficiency of 15% in a 31 μm diameter microdisk laser. The continuous-wave lasing is observed up to 110°C.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
High speed data transmission using directly modulated microdisk lasers based on InGaAs/GaAs quantum well-dots

Fedor Zubov, Mikhail Maximov, Natalia Kryzhanovskaya, Eduard Moiseev, Maria Muretova, Alexey Mozharov, Nikolay Kaluzhnyy, Sergey Mintairov, Marina Kulagina, Nikolay Ledentsov, Lukasz Chorchos, Nikolay Ledentsov, and Alexey Zhukov
Opt. Lett. 44(22) 5442-5445 (2019)

Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots

N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, M. M. Kulagina, S. A. Blokhin, K. E. Kudryavtsev, A. N. Yablonskiy, S. V. Morozov, Yu. Berdnikov, S. Rouvimov, and A. E. Zhukov
Photon. Res. 7(6) 664-668 (2019)

Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm

Natalia Kryzhanovskaya, Eduard Moiseev, Yulia Polubavkina, Mikhail Maximov, Marina Kulagina, Sergey Troshkov, Yury Zadiranov, Yulia Guseva, Andrey Lipovskii, Mingchu Tang, Mengya Liao, Jiang Wu, Siming Chen, Huiyun Liu, and Alexey Zhukov
Opt. Lett. 42(17) 3319-3322 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.