Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influence of permittivity on gradient force exerted on Mie spheres

Not Accessible

Your library or personal account may give you access

Abstract

In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep. 7, 18042 (2017) [CrossRef]  ], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Radiation force exerted on a sphere by focused Laguerre–Gaussian beams

Huachao Yu and Weilong She
J. Opt. Soc. Am. A 32(1) 130-142 (2015)

Analysis of lateral binding force exerted on a bi-sphere induced by an elliptic Gaussian beam

Jing Bai, Zhen-Sen Wu, Cheng-Xian Ge, Zheng-Jun Li, Tan Qu, and Qing-Chao Shang
J. Opt. Soc. Am. A 35(2) 336-345 (2018)

Optical force on a large sphere illuminated by Bessel beams: comparisons between ray optics method and generalized Lorenz–Mie theory

Shukun Song, Neng Wang, Wanli Lu, and Zhifang Lin
J. Opt. Soc. Am. A 31(10) 2192-2197 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved