Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 16,
  • Issue 2,
  • pp. 020010-
  • (2018)

High-power all-fiber 1.0/1.5 μm dual-band pulsed MOPA source

Not Accessible

Your library or personal account may give you access

Abstract

The simultaneous dual-band pulsed amplification is demonstrated from an Er/Yb co-doped fiber (EYDF), and consequently a high-power all-fiber single-mode 1.0/1.5 μm dual-band pulsed master oscillator power amplifier (MOPA) laser source is realized for the first time, to the best of our knowledge, based on one singlegain fiber. The simultaneous outputs at 1061 and 1548 nm of the laser source have the maximum powers of 10.7 and 25.8 W with the pulse widths of 9.5 ps and 2 ns and the pulse repetition rates of 178 and 25 MHz, respectively. This EYDF MOPA laser source is seeded by two separate preamplifier chains operating at 1.0 and 1.5 μm wavebands. The dependence of the laser output powers on the length of the large-mode area EYDF, the ratio of the powers of the two signals launched into the booster amplifier, and the wavelength of the 1 μm seed signal are also investigated experimentally.

© 2018 Chinese Laser Press

PDF Article
More Like This
High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser

Changsheng Yang, Xianchao Guan, Qilai Zhao, Bo Wu, Zhouming Feng, Jiulin Gan, Huihui Cheng, Mingying Peng, Zhongmin Yang, and Shanhui Xu
Opt. Express 25(12) 13324-13331 (2017)

High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system

Weiqiang Yang, Bin Zhang, Ke Yin, Xuanfeng Zhou, and Jing Hou
Opt. Express 21(17) 19732-19742 (2013)

295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 μm

Sijing Liang, Lin Xu, Qiang. Fu, Yongmin Jung, David P. Shepherd, David J. Richardson, and Shaif-ul Alam
Opt. Express 26(6) 6490-6498 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.