Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optimization of metallic nanoapertures at short-wave infrared wavelengths for self-induced back-action trapping

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents simulation results for double nanohole and inverted bowtie nanoapertures optimized to resonate in the short-wave infrared regime (1050 nm and 1550 nm). These geometries have shown great promise for trapping nanoparticles with applications in optical engineering, physics, and biology. Using a finite element analysis tool, we found that the outline length for inverted bowtie nanoapertures in a 100 nm thick gold film with a 20 nm gap dimension having an optimized transmission resonance for 1050 nm and 1550 nm optical wavelengths is 106.5 nm and 188.5 nm, respectively. With the same gap size, the radii of the circles for the double nanohole nanoapertures are 72 nm and 128 nm. The near-field enhancements of the two structures are almost the same, while the double nanohole geometries have a 20% larger full width at half-maximum than the inverted bowtie. Next, by studying the effect of changing the inner radii of the inverted bowtie corners, we found that the difference between 2 nm and 6 nm corner radii can blue-shift the optical resonance by up to 45 nm. As a result of not having any inner corners, the double nanohole structure requires less precise fabrication and therefore could potentially have a higher successful yield of nanoapertures during the manufacturing process. Lastly, we will show experimental results that confirm the optical resonance of the nanoapertures at 1550 nm. These results will enable better performance and signal-to-noise ratio in nanoaperture trapping for the short-wave infrared wavelength regime.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Plasmonic optical trapping of nanoparticles with precise angular selectivity

Ruo-Heng Chai, Wen-Jun Zou, Jun Qian, Jing Chen, Qian Sun, and Jing-Jun Xu
Opt. Express 27(22) 32556-32566 (2019)

Self-induced back-action for aperture trapping: Bethe-Rayleigh theory

Samuel Mathew and Reuven Gordon
Opt. Express 31(26) 44190-44198 (2023)

Colloidal lithography double-nanohole optical trapping of nanoparticles and proteins

Adarsh Lalitha Ravindranath, Mirali Seyed Shariatdoust, Samuel Mathew, and Reuven Gordon
Opt. Express 27(11) 16184-16194 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved